
Async Coding
in Java
Why asynchronous calls make sense in
a microservices context and a
comparison of frameworks that help you
do it

Petter Måhlén

What is Spotify?

Music

Spotify brings you the right music for every moment – on
your computer, your mobile, your tablet, your home
entertainment system and more.

Numbers

❏ > 60M active users (last 30 days)
❏ > 1.5B playlists
❏ > 30M songs
❏ Available in 58 countries

Microservices, Async and Me

My background
❏ Currently building infrastructure at Spotify:

❏ service discovery
❏ routing infrastructure
❏ service development framework

❏ About 6 years of microservices (4 Shopzilla, 2 Spotify)
❏ Similar sizes: 3-5 datacenters, a few thousand servers, more than 100 services

Async code
❏ Shopzilla sites: page rendering, ~10-40 service calls/page
❏ Shopzilla inventory: high-performance VoltDB calls
❏ Spotify view aggregation services, ~5-10 service calls/request

Topics covered

Why write asynchronous code?

Why not write asynchronous code?

I’m going to do it, how?
❏ Code examples
❏ Frameworks

Why Asynchronous?

Performance

❏ Synchronous => throughput limited by
thread/worker count

❏ Synchronous => resources used for the
wrong things

❏ Asynchronous => latency improvements
through parallelism

❏ Async means ‘less active waiting’

(A)synchronicity in a Restaurant

Typical microservices architecture:

Difference monolithic => microservices is latency; what used to be a method call is a remote call across the
network

Clients
Aggregation/
Fan-out

Backend Services

Async and Microservices

Async at Shopzilla

Async at Shopzilla

Shopzilla Async Framework
❏ Latency to start of render critical for revenue
❏ Framework put futures into a map, get actual results out
❏ Problems:

❏ get = null - why?
❏ get => block, mistakes delayed start of render
❏ lack of visibility - what gets put into the map? Is it used?

Created PageFlow
❏ explicitly specifying call graph as data structure
❏ clunky syntax, tightly tied to Shopzilla infrastructure
❏ ‘accidentally’ moved concurrency into framework, great

Search

Category

Render

Merchants

Shopzilla Inventory

❏ Read/write logic for VoltDB databases
❏ In-memory, transactional, high-performance DB
❏ 100k+ writes/sec => async needed for performance
❏ Futures.transform() makes a sequence nested and harder to read

Created library for chaining invocations
❏ Simpler, less tied to infrastructure than PageFlow
❏ Just a chain, no fan-out/fan-in

Read X

Update Y

Update X

Async at Spotify

Thinner Clients
❏ Move logic from clients to backend

❏ Easier, faster deployment
❏ More mobile-friendly

❏ “View aggregation services”
❏ Many downstream service invocations, more

complex graphs
❏ Use of ListenableFutures makes code complex

Created Trickle with Rouzbeh Delavari
❏ Open source (https://github.com/spotify/trickle/)
❏ Explicit graph like PageFlow
❏ Generic like the VoltDB library

https://github.com/spotify/trickle/

Why not asynchronous?

Because it’s harder to write, read, test and reason about
❏ Business logic obscured by concurrency management overhead
❏ Concurrency primitives can be invasive. What if somebody by accident does a get() instead of a

transform?
❏ Typesafe fan-in hard (Futures.allAsList(), FuncN, BiConsumer/BiFunction, etc.)
❏ Testing - flakiness, exception handling, more execution paths
❏ Understanding errors/call stacks

❏ (Graceful degradation in case of errors)

Code Examples!

Input: Endpoint

Read Current

Update
Endpoint

Return Interval

Maybe Update
timestamp

Input: Endpoint

Read Current

Update
Endpoint

Return Interval

Maybe Update
timestamp

https://code.google.com/p/guava-libraries/wiki/ListenableFutureExplained

Pros
❏ low-level: not much magic
❏ (mostly) familiar concepts
❏ nice and small API
❏ good interoperability with other frameworks since futures are so common

Cons
❏ verbose
❏ concurrency management obscures business logic
❏ low-level: concurrency is in your face, easier to make mistakes
❏ fan-in is messy

Subjective Comparison:
ListenableFutures

https://code.google.com/p/guava-libraries/wiki/ListenableFutureExplained
https://code.google.com/p/guava-libraries/wiki/ListenableFutureExplained

Subjective Comparison:
RxJava

Rx = Reactive Extensions
 http://reactivex.io/

Pros
❏ feature-rich, especially for streams of data
❏ separates concurrency from business logic
❏ easy to combine results, do fallbacks, etc.
❏ clean code

Cons
❏ unfamiliar concepts/high learning threshold
❏ large and clumsy API (cf #methods on Observable interface)
❏ “everything is a collection”

http://reactivex.io/

Subjective Comparison:
Trickle

https://github.com/spotify/trickle/

Pros
❏ separates concurrency from business logic
❏ nice error handling + reporting support
❏ developer-friendly API
❏ good interoperability with regular Futures/other frameworks

Cons
❏ weird to do graph wiring in data
❏ not in widespread use

https://github.com/spotify/trickle/
https://github.com/spotify/trickle/

Result of engineers at Spotify coding up a pretty small async graph

Let’s get more data: try it yourself at https://github.com/pettermahlen/async-shootout and fill in the form!

Technology Get going Focus on core Cleanness

ListenableFutures 4.0 3.6 2.7

RxJava 2.8 3.7 3.1

Trickle 3.9 3.8 4.4

Many subjective comparisons

https://github.com/pettermahlen/async-shootout

Choices, choices

There’s more:
❏ Akka

❏ actors
❏ cool, but sort of all-or-nothing - greenfield only?

❏ CompletionStage in Java 8
❏ allows chaining of asynchronous calls
❏ fan-in is harder than Rx or Trickle

❏ Disruptor
❏ Not just super-high-performance; allows

constructing call graphs
❏ also all-or-nothing, at least within single service

Picking your Framework

Consider:
❏ your migration path, if any
❏ how to integrate with third-party tools
❏ the learning curve
❏ the expected level of concurrency expertise of devs

… and above all, make sure you need it!

Questions?

- exceptions
- timing

Calling an asynchronous method

Some code

public ListenableFuture<Gherkin> serve() {
 ListenableFuture<Integer> count = counter.count();

 return Futures.transform(count, new Function<>() {
 public Gherkin apply(Integer count) {
 if (count == 0) {
 froobishes.delete();
 }
 return new Gherkin(count);
 }
 });
}

Testing tips

A Test

public void shouldDeleteFroobishesWhenCountIsZero()
 throws Exception {

 when(counter.count()).thenReturn(intFuture(0));
 service.serve();

 verify(froobishes).delete();
}

A Test

public void shouldDeleteFroobishesWhenCountIsZero()
 throws Exception {

 when(counter.count()).thenReturn(intFuture(0));
 service.serve().get(); // <--- terminate the future

 verify(froobishes).delete();
}

http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#verify(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#verify(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#when(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#verify(T)
http://docs.mockito.googlecode.com/hg/org/mockito/Mockito.html#verify(T)

